

5G Interconnected Ecosystems for the Development of Smart Cities

Narendra Mangra, GlobeNet

July 8, 2018

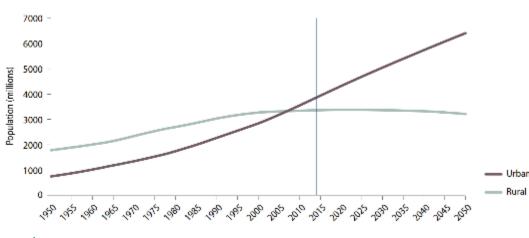
Agenda

- Strategy and Governance
- Smart Cities: Connected Ecosystem of Ecosystems
- SG Categories
- Smart Cities Roadmap Development

IEEE 5G

Applications and Services

Strategy and Governance



Narendra Mangra, GlobeNet

3

Motivation

- Cities produce 80% of the world's carbon emissions. Natural resources are exploited and wasted in cities, e.g. 50% of water resources are wasted due to leaky infrastructures, and residential and commercial buildings consume 1/3 of the global energy produced.
- There are more urban residents than rural residents across the globe. Global urban population increases by 2 people every second !
- Cities strive towards economic development, improve quality of life, and attract and retain residents, businesses, and visitors.
- Venture capital investment tends to be highly concentrated in center cities and are influenced by innovation, access to talent, high tech industry clusters, density, wages and income, and openness and diversity.

Global mobile industry GDP contribution 2017 - \$3.6 trn (4.5%) 2022 - \$4.6 trn (5.0%)

Source: The Mobile Economy 2018, GSMA Intelligence

Urban Population increases by 2 people ever second!

Natural resources are strained

Cities compete with each other to attract and retain residents, businesses, and visitors

4 Source: "World Urbanization Prospects: The 2014 Revision," United Nations, 2014 [Online]. Available: https://esa.un.org/unpd/wup/Publications/Files/WUP2014-Highlights.pdf

Narendra Mangra, GlobeNet

Smart Cities Strategy Development

Alignment within ecosystems - each activity is consistent with the overall strategy, e.g. connecting people, places and things in ecosystem(s)

Alignment among ecosystems – connected ecosystems complement each other, e.g. coordinated public safety, health care, transportation ecosystems

Optimization of ecosystems – "smart" coordination & information exchanges across ecosystems that are geared towards economic development, quality of life, and attraction & retention of residents, businesses, and visitors.

Smart City strategy should combine activities that fit and reinforce each other.

Strategic fit is difficult as it requires integration of decisions & actions across different ecosystems

- Ecosystem structures, systems, & processes need to be aligned with overall strategy
- Governance activities needs to address strategic goals, culture, trust, resources, technologies, policies, and a diverse stakeholder mix

Smart City Ecosystem Governance

Orchestrator Model

Smart City Integrator Model Smart City Platform Model City facilitates the exchange of ideas, stakeholder interactions, market drivers, and information processes. •City has centralized control and coordination Market Based •Open data platforms enable ecosystem provider Extended of required activities, gualified service delivery Platform: interaction. Enterprise: suppliers, and project implementation. •Trust is essential. Data security & privacy are critical for the development of smart cities Vertical & • Supports an integrated service with a focus on Horizontal & • Multiple disintegrated services that focus on client and Lateral client needs Networked service provider needs Structure: Structure: • Different approaches and solutions that could scale as Advantages: Advantages: • Quality Control. Reduced risk of market failure well as increase the level of services and features. • Need for early investments with no city based quality control enforcement methods. Services are also subject **Disadvantages**: Disadvantages •Requires capability, capital, and human to market conditions resources

Orchestrator Model: dynamically adjust between Integrator or Platform to evolve **Ecosystem of Ecosystems Structure**: Multiple complex connected ecosystems with multiple stakeholders and technologies.

Source: Governing the City: Unleashing Value from the Business Ecosystem, Ivanka Visnjic, Andy Neely, Carmelo Cennamo, and Nikola Visnjic, California Management Review, 2016, Vol. 59(1) 109–140

Narendra Mangra, GlobeNet

6

Connected Ecosystems of Ecosystems

Smart Cities Ecosystem of Ecosystems

- Quality of Life and Economic Growth: attract and retain Commercial, Business, Entertainment, & Residential interests
- Technologies: Analytics to support congestion relief (e.g. parking apps), increase tourism (e.g. AR/VR), and stimulate economic activity
- Cross-Ecosystem Interactions: Governance of ecosystem structure to coordinate complex interacting ecosystems.

Connected Vehicles Ecosystem

- Transportation Modes: Roads, Rails, Waterways, Air Travel, Pedestrians, Bicycles
- Technologies: DSRC, V2X, CBTC, PTC
- Cross-Ecosystem Interactions: EV charging and electrical grid loading, public safety

Connected Health Ecosystem

- Continuum of Care: trauma centers, hospitals, EMS, outpatient monitoring
- Technologies: Health IT, EHR, Broadband Communications, MBANs
- Cross-Ecosystem Interactions: EMS / Connected Vehicles, Analytics to track outbreaks, citywide continuum of care, etc

Utilities Ecosystems

- Broad range of utility services: Smart Grids / Electricity, Waste Management / Sanitation, Water, Gas
- Technologies: Meshed networks, narrowband RF, LPWA, AMI
- Cross-Ecosystem Interactions: energy conservation, spot pricing for utility market, energy efficiency & cost reduction for smart buildings,

Public Safety Ecosystem

- Safety and Governance: First Responder / Public Safety, Municipal Services / Public Works, and Environment applications
- Technologies: 5G, LMR, WLAN, satellite communications for fleet management, emergency response
- Cross-Ecosystem Interactions: connected vehicles, priority and preemption for first responders, etc

Agricultural Ecosystem

- Information and monitoring services, food supply chain visibility, mobile financial services,
- Technologies: 5G, LPWA, WLAN (inc TV white spaces), satellite communications
- Cross-Ecosystem Interactions: food supply chain visibility inc urban food desert reduction, massive IoT, connected vehicles, public safet

Smart City development should address pain points and address goals & aspirations while retaining the unique culture of each city.

Solutions should be aligned with the underlying strategy and complement each other.

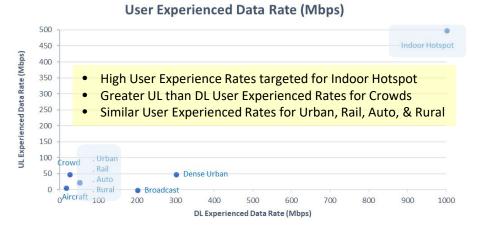
Narendra Mangra, GlobeNet

IEEE 5G

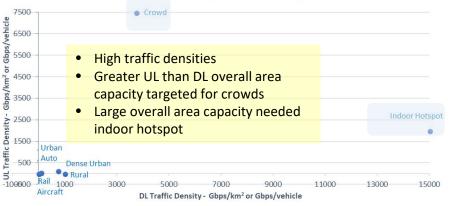
Applications and Services

5G Categories & Smart Cities Roadmap

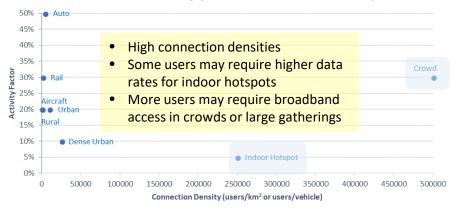
Narendra Mangra, GlobeNet


8

Smart City Applications – 5G Network Operations

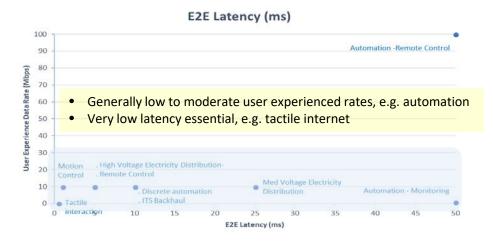

Network Slicing Ability to create dedicated logical networks within a shared infrastructure **Multiple Access** Support for 3GPP and non-3GPP network connectivity with potential simultaneous services. **Technologies Network capability** Extend network capabilities to 3rd party providers e.g., APIs, QoS policy, dynamically exposure customization of dedicated network slices that support diverse use cases. Flexible Supports multicast/broadcast network design, live adhoc broadcasts that may not have been broadcast/multicast stored on a video server, and simultaneous user access to unicast data and broadcast service. service **Markets requiring** Adaptability for difficult environments (e.g., remote areas,) with local operations constraints minimal service (availability and reliability of local interdependencies, e.g. power). Support for minimal user experience, e.g. 100kbps with 50ms latency, while prioritizing emergency services. **Extreme long range** Long range coverage (up to 100 km) in low density areas (up to 2 user/km²), a minimum user coverage in low density throughput of 1 Mbps DL and 100 kbps UL. areas Multi-network Service providers may enable users to access multiple networks simultaneously. connectivity and service delivery across operators

Source: 3GPP

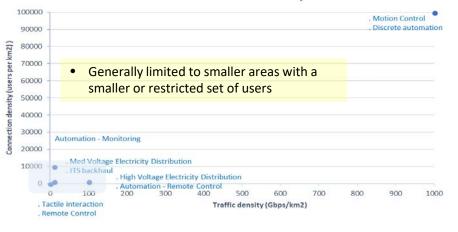

Enhanced Mobile Broadband (eMBB) Considerations

Traffic Density (Gbps/km² or Gbps/vehicle)

Connection Density (users/km² or users/vehicle)



5G Drivers: High data rate, low latency, traffic density, connection density, varying levels of mobility
5G Deployments: Indoor/Outdoor Local and Wide Area Connectivity


Fixed Mobile Convergence: combined use of fixed broadband access, e.g. fiber, and 5G access network. **Femtocell Deployment**: seamless user experience over radio access and Femtocell access using fixed broadband networks.

Critical Communications Considerations

Traffic and Connection Densities per km²

Other Considerations

- Availability, e.g. deployables
- Reliability, e.g. industrial control, drone connectivity
- Positioning Accuracy, e.g. connected vehicles

5G Drivers: Low latency, reliability, traffic density, position accuracy

Mission Critical Services: critical communications that may require a higher communications priority, e.g. first responders, disasters.

Narendra Mangra, GlobeNet

Smart City Applications – Massive IoT & eV2X

Massive	5G Drivers: Communications efficiency, traffic density, communications density, position accuracy
Internet	Operational : network servers/applications and devices support to identify and reach each other, IoT security
of Things	Connectivity : Direct 3GPP connection (e.g., a sensors), indirect 3GPP connection (e.g., a smart wearable communicating via a smart phone), direct device connection (e.g., a biometric devices that communicate directly with other biometric devices.
(MIoT)	Resource Efficiency : include bulk provisioning, resource efficient access, optimization for device originated data transfer, and mobility management efficiencies for stationary or limited mobility devices.
	5G Drivers: High data rate, low latency, reliability, traffic density, connection density, varying levels of mobility, high position accuracy
	Vehicles Platooning : All the vehicles (may be autonomous) in the platoon receive periodic data from the leading vehicle.
eV2X	Advanced Driving : enables semi-automated or fully-automated driving. Vehicles and/or RSU shares data obtained from its local sensors with vehicles in proximity,.
	Extended Sensors : enables data exchanges from local sensors or live video data among vehicles, RSUs, devices of pedestrians and V2X application servers.
	Remote Driving: enables a remote driver or a V2X application to operate a remote vehicle
¹² Source: 3GPP	

Smart City Deployment Considerations

	High data rates (User Experienced Data Rate : the minimum data rate required to achieve a sufficient quality experience)
	Low latencies
	Reliability
	Resiliency
Implementation Drivers	Traffic density (e.g. traffic within certain area of interest)
	Connection density (e.g. number of connections within a certain area)
	Speed / Mobility
	Accuracy of position determination

Smart Cities Roadmap Considerations

Ecosystem	Introductory Stage	Growth Stage	Maturity Stage	Decline Stage
Smart Cities	Experimentation with fragmented solutions	practices emerge.	Successful actors emerge. Industry structure and market positioning becomes critical.	Seamless interoperable connected ecosystem of ecosystems with a smaller set of successful actors.
coordination w stakeholders w	dependent ecosystem vith a diverse set of vorking with a disparate set of volving at different rates.	Specialized and low cost solutions will emerge that is positioned for the needs of different city segments. Urban planners begin to incorporate more technologies that transparently blends into the inner fabric of the	Tangential sectors that may include combinations of various ecosystems.	Smart Cities evolve to the next generation
		city.	deployment is dependent on the	
		city.	ability for connected people, places, and things.	
	Core Component Ecosyste	ms with varying rates of Inc	ability for connected people, places, and things.	
Communications	Core Component Ecosyste	ms with varying rates of Inc	ability for connected people, places, and things.	le Stages
		ms with varying rates of Inc ications, e .g. Terrestrial 3GPP ar	ability for connected people, places, and things. Austry Structure Life Cyc nd non-3GPP mobile, Satellit	le Stages
Connected Vehic	s Ecosystem: Broadband Commun	ms with varying rates of Inc ications, e .g. Terrestrial 3GPP ar pads, Rails, Air, Waterways, Pede	ability for connected people, places, and things. dustry Structure Life Cyc nd non-3GPP mobile, Satellit estrian	le Stages e, Fixed Broadband
Connected Vehic Connected Healt	s Ecosystem: Broadband Commun	ms with varying rates of Inc ications, e .g. Terrestrial 3GPP ar oads, Rails, Air, Waterways, Pede a centers, community hospital, c	ability for connected people, places, and things. Austry Structure Life Cyc nd non-3GPP mobile, Satellit estrian linics, emergency transport,	le Stages e, Fixed Broadband
Connected Vehic Connected Healt Public Safety: Fir	s Ecosystem: Broadband Commun cles: Transportation Modes, e.g. Ro th: Continuum of Care, e.g. trauma	ms with varying rates of Inc ications, e .g. Terrestrial 3GPP ar oads, Rails, Air, Waterways, Pede a centers, community hospital, c MS, and situational awareness fo	ability for connected people, places, and things. Austry Structure Life Cyc nd non-3GPP mobile, Satellit estrian linics, emergency transport,	le Stages e, Fixed Broadband

Narendra Mangra, GlobeNet

Conclusion

- Smart Cities is a Connected Ecosystem of Ecosystems
- Each city may have different approaches for economic development, quality of life, attraction & retention of residents, businesses and visitors
- Address trust, privacy and security concerns related to the open data model, e.g. personal information.
- Smart city governance: orchestrator, integrator and platform models
- Technologies will need to be interoperable
 - within each vertical (e.g. intermodal transportation coordination between connected vehicles and railroad crossings) and
 - *across* major verticals (e.g. electric vehicle charging and impact to smart grid).
- Technology should operate seamlessly in the background to connect people, places, and things

Smart Cities presents both opportunities and challenges to address sustainability, resource conservation, economic and technology development initiatives.

The evolution to smart cities may create competition to attract and retain key stakeholders through a connected ecosystem of ecosystems.

Smart City is a connected ecosystem of ecosystems that spans diverse technologies, governance approaches, privacy, and security, and other stakeholder considerations that include economic growth and quality of life.

IEEE 5G Technology Roadmap Working Group

https://5g.ieee.org/roadmap

Narendra Mangra, GlobeNet

16